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Since most real decisions depend upon current market states or whether it is advantageous to the participants
themselves, this paper revisits the relationship between spot and futures oil prices ofWest Texas Intermediate
covering 1986 to 2009 with an innovative approach named quantile cointegration. Different to previous
perspectives, we target the issues of cointegrating relationships, causalities, and market efficiency based on
different market states under different maturities of oil futures. In our empirical analysis, except for market
efficiency, long-run cointegrating relationships and causalities between spot and futures oil prices have
significant differentials among futures maturities and the performances of spot oil markets. Furthermore, the
response of spot prices to shocks in 1-month futures oil prices is much steeper in high spot prices than in low
spot prices. This phenomenon is consistent with the prospect theory (Kahneman and Tversky, 1979), in that
the value function is generally steeper for losses than for gains.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There exist many studies on energy markets discussing the
asymmetric effects of oil shocks on economic activities or financial
markets (Huang et al., 2005; Park and Ratti, 2008; Kilian, 2008, for
example). Borenstein et al. (1997) and Lardic and Mignon (2006)
explore that the possible sources of non-linearity for energy prices are
monetary policy, adjustment costs, adverse effects of uncertainty on
the investment environment, sellers' market power, production/
inventory adjustment lags, and asymmetry in oil product price. The
responses of market participants to oil prices shocks are not perfectly
significantly rational. Samuelson and Zeckhauser (1988) state that:

“To do nothing is within the power of all men.”

In other words, according to the status quo, it is sometimes better
to do nothing than to adopt other decisions. We cannot expect market
participants to be rational in the face of several kinds of situations,
especially quite extreme situations. The prospect theory (Kahneman
and Tversky, 1979) indicates that people tend to overweight losses
with respect to comparable gains and engage in risk-averse behavior
with respect to gains and risk-acceptant behavior with respect to

losses. People thus respond to probabilities in non-linear (or
asymmetric) manners.

Some studies do discuss causalities between spot and futures oil
prices with non-linear methods (Bekiros and Diks, 2008; Huang et al.,
2009). Others examine the efficiency of crude oil markets conditional
on some episodes of extreme volatility (Moosa and Al-Loughani,
1994; Switzer and El-Khoury, 2007, for example). What the large
numbers of non-linearmethods emerge for aremainly relative to tests
and prediction. For example, Michael et al. (1997) argue that non-
linearity could lead to non-rejection of the null hypothesis of no
cointegration. Nevertheless, Tversky and Kahneman (1991) propose a
reference-dependent theory of consumer choice, which explains such
effects by a deformation of indifference curves about the reference
point. The asymmetry of gains and losses around a reference point
means how people identify the reference point and hence how they
frame a choice issue can have a critical effect on their choices. In fact,
under real decisions, recent market performance always impacts the
sentiments of consumers or investors, especially when markets are in
a clear trend (e.g., a bull or a bear market).

This paper contributes to the existing literature in the following.
First, we apply the interesting view of the prospect theory to re-
examine the relationship between spot and futures oil prices with an
advanced quantile cointegrating regression (QC hereafter) developed
by Xiao (2009) under different market states and different maturities
of futures oil prices. Our empirical results support the non-linear
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cointegration between contemporaneous spot and futures oil prices
with daily data among futures contracts with different maturities.
Differently, we find that the long-run relationship between spot and
futures oil prices varies according to not only the contract lengths of
futures oil prices, but also the reference points-current performances
of spot crude oil markets. Moreover, we also examine the effect of
error-corrections (EC, hereafter) — that is, explore the estimated
coefficients of error-correction terms across various quantiles, rather
than a constant coefficient as in conventional linear methods. In
fact, our empirical results present the differentials among various
quantiles.

Second, our empirical results support bi-directional causalities
between spot oil prices and 1-month futures oil prices across all
quantiles. However, the results of uni-directional causalities or bi-
directional causalities are found only in some quantiles and long
futures contracts (2-, 3-, and 4-months). Current market states could
affect the lead–lag relation between spot and futures oil prices.
Finally, the efficient market hypotheses are supported in short futures
contracts, and the efficiency in crude oil markets seems to be satisfied
easily with the no arbitrage rule. Here, we employ the prospect theory
to explain these phenomena discussed in the next section.

The remainder of this paper is organized as follows. Section 2
presents a literature discussion from a conceptual economic perspec-
tive relative to our works. Section 3 describes the data information.
Section 4 gives empirical models and empirical methodologies.
Section 5 offers the empirical analysis and the implications of the
results. The final section shows the conclusions.

2. Literature discussions

There exist many studies exploring the linkage of spot and futures
prices for predictability, market efficiency, and cointegration.1 Some
works find that spot and futures price are not cointegrated, or they are
cointegrated, but do not move together one-for-one in the long run.
Recent studies focus on investigating the non-linear causality
between spot and futures oil markets (Bekiros and Diks, 2008;
Huang et al., 2009). It is a pity that long-run cointegrating relation-
ships are still limited to be constant in the methods used by those
existing studies. Although one recent developed methodology called
time-varying cointegration2 solves this problem, the impact of current
market states in that model is limited to further considerations. To
fill this gap, the current paper employs the advanced developed
method — named the quantile cointegration approach. This method
allows us to discuss cointegrating relations between spot and futures
oil prices based on the performances of spot oil prices.3 In contrast to
the traditional linear estimation of cointegration conditions on the
mean distribution of the dependent variable, this method allows us to
explore the time-varying coefficients in the cointegrating relationship
conditions on the quantile of a dependent variable's distribution.

Why should we notice the non-linear effects for spot–futures oil
prices? Before discussing about irrational performances found in
recent studies, let us recall one experiment shown in the prospect
theory (Kahneman and Tversky, 1979).

Condition 1.
Case A: You will gain $4000 with probability 0.8.
Case B: You will gain $3000 with probability 1.

Condition 2.
Case C: You will lose $4000 with probability 0.8.
Case D: You will lose $3000 with probability 1.

Which one will you choose for each condition? Do you choose
them rationally? In their experiments, Case B is the prevalent
preference for Condition 1, and Case C is the prevalent preference in
Condition 2. These results are not inconsistent with expected utility
theory. The expected utility in Condition 1 is $3200, which is more
than in Case B, but people choose chase for a sure gain. However,
when people face a sure loss, they are transformed into risk seekers.
Obviously, they have different attitudes in facing gains and losses.
More importantly, according to their findings, their responses to
losses are much steeper than to gains.

According to the prospect theory, economic agents are concerned
about changes in wealth rather than with its final state. An economic
agent feels more pain with a loss than he feels happy with a gain that
is of the same size of the loss. Kahneman and Tversky (1979) find that
the preference between negative prospects is the mirror image of the
preference between positive prospects. They label this pattern as the
reflection effect. Moreover, they show that people become more
willing to take risks to avoid losses than to realize gains. These
observations illustrate what is often called the loss aversion attitude.

In empirical works such evidence can be found in some areas. For
example, Mascarenhas and Aaker (1989) present that firms adjust
their strategies significantly and asymmetrically over business cycle
stages. Genesove andMayer (2001) explain the positive price–volume
relationship from the perspective of loss aversion that sellers are
irrationally averse to realizing losses in depressing markets. These
results exhibit the effects of market states on real decision-making.
Advantageous and disadvantageous conditions will produce differen-
tial reactions. In addition, there exist perspectives for explaining non-
linearity and its necessity. For example, Maslyuk and Smyth (2008)
find that each oil price series can be characterized as a random walk
process and that structural breaks are significant and meaningful in
terms of events that have impacted world oil markets. Moreover,
Maslyuk and Smyth (2009a) obtain the characteristics of a non-linear
process in crude oil production. With this finding, conventional unit-
root tests, which assume linear and systematic adjustment, could
interpret a departure from linearity as being permanent stochastic
disturbances. These findings stress the influences of exogenous shocks
that cause non-linearities.

No previous study has allowed for quantile-varying in a coin-
tegrating vector. In the spot–futures markets, if relationships between
spot and futures prices do not approach equilibrium, then an effect
such as arbitrage or speculation will make it equilibrium.4 Abhyankar
(1996) shows the non-linear relationship can be ascribed to the
difference in transaction costs, the microstructure effects of the
market, or the role of noise traders. Other potential sources of the
non-linearity include diversity in agents' beliefs (Brock and LeBaron,
1996), herd behavior (Lux, 1995), oligopolistic and monopolistically
competitive markets (varying degrees of price rigidity; Galeotti et al.,
2003), and heterogeneity in investors' objectives (Peters, 1994).
While we acknowledge the potential importance of time-varying
effects, it is this kind of non-linearity that inspires us to continue the
research in this paper.

In energy markets the long-run cointegration relationship be-
tween spot and futures oil prices has been proven. Some studies
utilize conventional linear cointegration, such as themethods of Engle

1 For example, see Bopp and Sitzer (1987), Serletis and Banack (1990), and Crowder
and Hamed (1993) for the early literature, and McAleer and Sequeira (2004), Cologni
and Manera (2008), and Maslyuk and Smyth (2009b) for the recent literature.

2 Chow (1998) employs a Markov regime switching framework and shows that tests
for cointegration and estimates of the cointegrating vector are likely to be biased when
a sample contains infrequent changes in regime. Taking these shifts into account, the
null hypothesis that spot and futures prices are cointegrated and move together one-
for-one in the long run no longer can be rejected.

3 Cointegration, in simple words, refers to co-movements of variables in the long
run. Economic theory does not show that the cointegration relationship must be linear.
Instead, it predicts three possibilities for the relationship: cointegration, non-linear
cointegration, and no cointegration (Zhou, 2010). 4 Please see Moosa and Al-Loughani (1995) who discuss this related issue.
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and Granger (1987) and Johansen (1988), to examine the long-run
equilibrium between spot and futures oil prices (For example, Quan,
1992; Schwartz and Szakmary, 1994; Silvapulle and Moosa, 1999;
McAleer and Sequeira, 2004). Recent studies equipped with non-
linear models, however, only discuss the potential non-linear
adjustment mechanisms about deviating from the long-run equilib-
rium relationships for spot and futures oil markets (Ewing et al., 2006;
Bekiros and Diks, 2008; Huang et al., 2009, for example). The
limitation of time-invariant cointegrating coefficients in their esti-
mation implies a constant long-run relation, rather than a sequence of
cointegrating relations varying with time or innovations of markets.
This paper employs quantile cointegrating regressions to estimate the
long-run relation between spot and future oil prices conditional on
market innovations.

Some recent studies examine the lead–lag relation between spot
and futures oil prices, in which they compare the difference between
the results of linear and non-linear methods. For example, Silvapulle
and Moosa (1999) show that linear causality testing reveals that
futures prices lead spot prices, but non-linear causality testing shows
a bi-directional relationship. Bekiros and Diks (2008) offer that pair-
wise vector error-correction models (VECM) suggest a strong bi-
directional Granger causality between spot and futures oil prices, but
non-linear methods present a uni-directional causality under some
restricted conditions. Different from the usage of non-linear methods,
Bopp and Sitzer (1987) test the predictability of futures prices to spot
prices in heating oil markets. They find that near-term futures prices
add information to the forecasting process, but futures prices more
than 3 periods out do not.

Some studies discuss the efficiency of crude oil markets. Crowder
and Hamed (1993) find the non-rejection of the speculative efficiency
hypothesis with New York Mercantile Exchange (NYMEX) crude oil
contracts during the period 1983–1990. Moosa and Al-Loughani
(1994) suggest that futures oil prices (WTI) are neither unbiased nor
efficient forecasters of spot prices during the period 1986–1990.
Peroni and McNown (1998) support the speculative efficiency
hypothesis for West Texas Intermediate (WTI) oil prices during the
period 1984–1996. Switzer and El-Khoury (2007) examine the
efficiency of the oil market (NYMEX) and support market efficiency,
even during episodes of extreme conditional volatility. Obviously,
they see episodes with extreme volatility may possibly influence
market efficiency. This paper examines market efficiency from the
perspectives of various market state performances.

After reviewing the above existing studies, we conclude that more
and more detailed and precise examinations have been exerted since
the exposure of a deviation in estimating or predicting using
conventional methods. Therefore, to improve the deviation and to
match what happens under real decisions, we employ quantile
cointegrating methods to examine the cointegration, causalities, and
market efficiency in spot–futures oil markets.5

3. Data

This paper investigates the relationship between spot and futures
prices in crude oil markets. The time-series data we adopt consist of
the daily spot and futures oil prices of West Texas Intermediate (WTI)
covering January 2, 1986 to July 6, 2009. The source of the data is from
Energy Information Administration (EIA). The futures oil prices
include four kinds of contracts in maturity, i.e. 1, 2, 3, and 4 months,
which are traded on the New York Mercantile Exchange (NYMEX).

Each contract expires on the third business day prior to the 25th
calendar day of the month proceeding the delivery month. If the 25th
calendar day of the month is a non-business day, then trading ceases
on the third business day prior to the business day preceding the 25th

calendar day. Table 1 shows the descriptive statistics and correlations
of spot and futures oil prices, where LnS, LnF1, LnF2, LnF3, and LnF4
denote the forms of natural logarithm for spot prices and the four
kinds of futures prices maturing in 1, 2, 3, and 4 months, respectively.
Table 1 presents that correlations between spot and four kinds of
futures oil prices are close to one— that is, the movements of spot and
futures oil prices are close. On the other hand, by the Jarque-Bera
(Jarque and Bera, 1980) test, we confirm the non-normality of
variables, therefore revealing the appropriateness and necessity of
quantile regressions, which improve non-normal skewness and
kurtosis in estimation.

4. Methodology

In our empirical processes we mainly conduct an examination
through the following steps. First, we test the stationarity of variables
with several kinds of unit-root tests. Second, we apply Johansen's
linear cointegration model to examine whether the cointegrating
relationship exists or not. Third, we test the null hypothesis of
constant cointegrating coefficients by using bootstrapped critical
values and further analyze with quantile cointegrating regressions.
Finally, we test causalities between spot and futures oil prices with
linear, non-linear, and quantile methods. We mainly explore three
critical issues: (i) contemporaneous spot and futures oil prices; (ii)
the lead–lag relation between spot and futures oil prices; (iii) efficient
market hypotheses in crude oil futures markets.

4.1. Models

In testing the unit root we apply the Augmented Dickey-Fuller
(1979) (ADF), Phillips-Perron (1988) (PP), and Kwiatkowski et al.
(1992) (KPSS) tests. For a detailed review about these unit-root tests,
one can see Maddala and Kim (1998). In testing the effect of
cointegration, we apply Johansen's cointegration methodology devel-
oped by Johansen (1991, 1995). This method tests with linear
cointegrating regressions restricted in a VAR representation. To save
space, please see details in Johansen (1995).

The concept of cointegration is mainly applied for non-stationary
time series variables that produce stationary residuals in models. We
employ the quantile cointegrating regression developed by Xiao
(2009) to examine contemporaneous spot and futures oil prices. To
avoid endogeneity,6 Xiao adopts the approach proposed by Saikkonen
(1991), who uses leads and lags to deal with endogeneity in the
traditional cointegration model.7 The equation is as follows:

LnSt = α + βLnFt + ∑
K

i=−K
ωiΔL nFt−i + εt ; ð1Þ

where LnS is a spot oil price taken in natural logarithm, LnF is a futures
oil price taken in natural logarithm, and ε denotes a residual. The
number K is the length of the lead–lag terms. Here, we set K to be
three.8 In empirical works, we replace LnF with LnF1, LnF2, LnF3, and
LnF4 for different contracts and the following equations go along with
this setting.

5 The literature about market efficiency (e.g., Crowder and Hamed, 1993) between
spot and futures oil markets will be described in an empirical analysis.

6 Indeed, in our Granger-causality test a bi-directional relationship appears between
the two variables (see panel A of Table 7).

7 In deciding the kinds of trend terms, we adopt the Akaike Information Criteria
(AIC) in testing Johansen's cointegration models. According to AIC, the model with an
intercept but no time trend is appropriate. The relative discussion can be seen in
Pesaran and Smith (1998).

8 We also set K to be 7 and 30, respectively, but it does not show much difference
between them.
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By testing Granger causality, we are able to decide the role of the
lead–lag variables. Here, we use the following equation to test the
Granger causality between variables.

ΔLnSt = α + ηε̂t−1 + ∑
N

i=1
βiΔLnFt−i + ∑

M

j=1
γ jΔLnSt−j + et ð2Þ

ΔLnFt = α + ηε̂t−1 + ∑
N

i=1
βiΔLnFt−i + ∑

M

j=1
γ jΔLnSt−j + et ; ð3Þ

where Δ denotes the first difference of variables, and N andM are the
lag lengths. The variable ε̂t−1 is the 1-lagged variable of the estimated
error-correction terms given from Eq. (1), and et denotes a residual. In
our empirical work, we setN andM as the same and choose themwith
Schwarz information criteria (SIC) in vector auto-regression (VAR)
models.

In testing the efficiency of the spot and futures oil markets, we
adopt the expectations hypothesis and the no arbitrage rule.9 Under
risk neutrality, the expectations hypothesis implies the following
model:

LnSt = α + βLnFt−M + ∑
K

i=−K
ωiΔLnFt−i + εt ;M = 1;2;3;4; ð4Þ

where ε is the residual. We also implement the lead–lag terms ΔLnFt− i

(i=−K to K) to deal with the endogeneity, where K is three. This
model is based on the definition ofmarket efficiency that argues futures
prices, LnFt−M, should contain all relevant information in forecasting
the next period's spot prices, LnSt. The joint restrictions of market
efficiency and risk neutrality imply values of α=0 and β=1. This is the
same as Fama's (1970) notion of weak form efficiency.

The condition of the no arbitrage rule derived by Brenner and
Kroner (1995) describes that investors should be indifferent between
owning an open spot position and selling the futures price, or for
purchasing a risk-free bond that matches the maturity of the futures
contract. The lead-lag terms are adopted to avoid endogeneity. Thus,
this condition implies the following model:

LnSt = α + β1LnFt−M + β2Rt + ∑
K

i=−K
ωiΔLnFt−i

+ ∑
L

j=−L
ψ jΔRt−j + εt ;M = 1;2;3;4;

ð5Þ

where R is the continuously compounded rate of return on risk-free
bonds, i.e., R=ln(1+ r) with the interest rate r of risk-free bonds10

and the length of lead–lag terms ΔLnFt− i and ΔRt− j (we set
K=L=3). Here, the constant term is not required to be zero, but it
is necessary to jointly restrict the conditions β1=1 and β2=1. Error
terms should be serially uncorrelated for market efficiency. We adopt
monthly data to test the market efficiency under the expectations
hypothesis and the no arbitrage rule.

4.2. Quantile cointegrating regression

In contrast to traditional linear cointegration models, many
applications in financial and economic areas suggest that the
cointegrating vector might not be constant. On the one hand, Park
and Hahn (1999) apply the cointegration model with time-varying
coefficients, where the coefficient is a function of a deterministic time
trend. Differently, Xiao (2009) considers the cointegration model
whereby the cointegrating coefficient is affected by innovations. We
introduce the quantile cointegrating model briefly and further
detailed discussion can be seen in Xiao (2009).11

The traditional cointegration model describes that:

yt = α + β
0
t xt + ut ; ð6Þ

where yt and xt are integrated with order 1 (I(1)), and ut is stationary
in level. To extend traditional cointegration models, Xiao (2009)
applies the idea proposed by Saikkonen (1991) that decomposes ut

into the lead–lag terms ∑
K

j=−K
Δxt−j and a pure innovation component

εt to deal with endogeneity in traditional cointegrationmodels. This is
described in the following model:

yt = α + β
0
txt + ∑

K

j=−K
Δ x

0
t−jΠj + εt : ð7Þ

Table 1
Descriptive statistics and correlation matrix.

LnS LnF1 LnF2 LnF3 LnF4

Descriptive statistics
Maximum 4.98 4.98 4.98 4.98 4.99
Minimum 2.33 2.34 2.36 2.36 2.37
Skewness 1.05 1.05 1.07 1.10 1.13
Kurtosis 3.29 3.29 3.27 3.28 3.30
Jarque-Bera 1087.7 1091.5 1141.6 1202.6 1268.8
Probability 0.00 0.00 0.00 0.00 0.00
Observations 5846 5846 5846 5846 5846

Correlation matrix
LnS 1.000 – – – –

LnF1 0.999 1.000 – – –

LnF2 0.998 0.999 1.000 – –

LnF3 0.996 0.997 1.000 1.000 –

LnF4 0.994 0.995 0.998 1.000 1.000

9 Cointegrating the oil price pairs of Eq. (1) does not necessarily mean that futures
markets present efficiency or inefficiency (Maslyuk and Smyth, 2009b).

10 The interest rate we use is the 3-month Treasury bond, and the data source is
Datastream.
11 Compared to the quantile regression approach, other possible non-linear methods
such as threshold autoregressive (TAR) or Markov switching are not able to estimate
conditional quantiles, because they were originally proposed to investigate non-linear
models for conditional means (Lima et al., 2008).
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If we denote the τ-th quantile of εt as Q ε(τ) (letIt =
σ xt ;Δxt−j;∀j
� �

), thenconditional onIt , theτ-thquantile ofyt is givenby:

Qyt
τ jItð Þ = α + β τð Þ0xt + ∑

K

j=−K
Δx′t−jΠj + F−1

ε τð Þ; ð8Þ

where Fε(⋅) is the c.d.f. of εt. Let Zt be the vector of regressors
consisting of (1,xt) and (Δx′t− j, j=−K,⋯,K),Θ=(α,β′t,Π′−K,⋯,Π′K)′,
and:

Θ τð Þ = α τð Þ;β τð Þ0 ;Π0
−K ; ⋯;Π

0
K

� �0
; ð9Þ

where α(τ)=α+Fε
−1(τ). We then rewrite the above regression as:

yt = Θ
0
Zt + εt ð10Þ

and

Qyt
τ jItð Þ = Θ τð Þ0Zt : ð11Þ

If we set εtτ=εt−Fε
−1(τ), then Q εtτ(τ)=0. In the above model, the

cointegrating coefficients βt are affected by innovations received at
each period. Consequently, the cointegrating vector can vary over the
quantiles and thus may be quantile τ-dependent. The conditioning
variables not only shift the location of the distribution of yt, but also
may alter the scale and shape of the conditional distribution.

Another further problem examines whether the cointegrating
vector βt is constant or not. The main test is conducted under the
hypothesis H0 : β τð Þ = β over all quantiles (τ), where β is a vector of
unknown constants. A natural preliminary candidate for testing
constancy of the cointegrating vector is a standardized version of
⌢β τð Þ−β

� �
, where β̂ τð Þ is the estimator of β(τ). Under the null and

sample size n:

n ⌢β τð Þ−β
� �

⇒
1

fε F−1
ε τð Þ� � ∫1

0
BΔxB

T
Δx

� 	−1
∫1

0
BΔxdB

�
Ψ; ð12Þ

where f(⋅) and F(⋅) are respectively the p.d.f. and c.d.f. of ut in Eq. (6),
Ψτ(u)=τ− I(ub0) for indicator I, B is the demeaned Brownian
motion, Bψ*(⋅) is the Brownian motion independent with BΔx(⋅), and
“⇒” represents weak convergence of the associated probability
measures. Denote β̂ as a preliminary estimator of β.

We now look at the process V̂n τð Þ = n β̂ τð Þ− β̂
� �

. Under H0:

V̂n τð Þ⇒ 1
fε F−1

ε τð Þ� � ∫1

0
BΔxB

T
Δx

� 	−1
∫1

0
BΔxdB

�
Ψ−plimn β̂−β

� �
; ð13Þ

which depends on the preliminary estimation of β. If ⌢β is the OLS
estimator of β in Eq. (7), then underH0 we have that:

sup
τ

V̂n τð Þ



 


⇒ sup

τ

1
fε F−1

ε τð Þ� � ∫1

0
BΔxB

T
ψ

� 	−1
∫1

0
BΔxd B�

Ψ−fε F−1
ε τð Þ

� �� �
B�
ε






;







ð14Þ

where Bε*(⋅) is the limit of the partial sum of εt. Thus, we may test
varying-coefficient behavior based on the Kolmogoroff–Smirnoff

statistic supτ V̂n τð Þ



 


. In generating critical values for the statistic

supτ V̂n τð Þ



 


, Xiao uses re-sampling methods.12

Xiao (2009) mentions this method contributes in the following
ways. First, it captures systematic influences of conditioning variables

on the location, scale, and shape of the conditional distribution of the
response. Second, it allows for additional volatility of the dependent
variables in addition to the regressors and provides an interesting
class of the cointegration model with conditional heteroskedasticity.
Third, the estimated cointegrating coefficients may be influenced by
the innovations received in each period and thus may alter over the
innovation quantile. Finally, formal tests for the varying-coefficient
cointegration relationship between variables are conducted by
employing bootstrap-based tests.

4.3. Non-linear granger-causality tests

In the following we introduce the non-parametric non-linear
causality test developed by Diks and Panchenko (2006). Given strictly
stationary time series processes {Xt}&{Yt}, where t is an integer, we say
{Xt} is a Granger cause of {Yt} if, for some k≥1, (Yt+1,…,Yt+k)|(FX, t,FY, t)
is not equivalent to (Yt+1,…,Yt+k)|(FY, t), where FX, t and FY, t are the
respective information sets of X and Y at time t. In testing for Granger
non-causality, the aim is to detect evidence against the null hypothesis:

H0 : Xtf g does not Granger cause Ytf g: ð15Þ

In practice, conditional independence is tested using finite lags lX
and lY:

Yt+1 j XlX
t ; Y

lY
t

� �
is equivalent to Yt+1 jYlY

t ;
�

ð16Þ

where Xt
lX=(Xt− lX+1,…,Xt) and Yt

lY=(Yt− lY+1,…,Yt). We set Wt=
(Xt

lX,YtlY,Zt), where Zt=Yt+1, as a vector with an invariant distribution
and (lX+ lY+1)-dimension. It should be noted that Diks and
Panchenko just consider the case for lX= lY=1 and W is assumed to
be a continuous random variable. Particularly, the joint probability
density function fX,Y, Z(x,y,z) and its margins have to satisfy that:

fX;Y;Z x; y; zð Þ
fY yð Þ =

fX;Y x; yð Þ
fY yð Þ ⋅

fY ;Z y; zð Þ
fY yð Þ : ð17Þ

By Eq. (17), the null hypothesis in Eq. (15) implies that:

q = E fX;Y;Z X;Y ; Zð ÞfY yð Þ−fX;Y X; Yð ÞfY;Z Y; Zð Þ = 0
h i

: ð18Þ

Assume f̂ W Wið Þ to be a local density estimator of a dW -variate
random vector W at Wi, where f̂ W Wið Þ = 2εnð Þ−dW n−1ð Þ−1∑j;j≠iIWij
and Iij

W= I(‖Wi−Wj‖bεn) with the indicator function I(⋅) and the
bandwidth εn, depending on the sample size n. Hence, we have the
test statistic:

Tn εnð Þ = n−1
n n−2ð Þ ⋅∑i

f̂ X;Z;Y Xi; Zi;Yið Þ f̂ Y Yið Þ− f̂ X;Y Xi;Yið Þ f̂ Y;Z Yi; Zið Þ:
�

ð19Þ

Under the conditions of lX= lY=1and εn=Cn−β(CN0,β∈(1/4,1/3)),
C is a constant, and Diks and Panchenko (2006) show that:

ffiffiffi
n

p �
Tn εnð Þ−q

Sn
→
D
N 0;1ð Þ; ð20Þ

where D means convergence in distribution and Sn is an estimator of
the asymptotic variance of Tn(⋅). In applications, we follow the
suggestion of Diks and Panchenko (2006) to truncate the bandwidth
by taking εn=max(Cn−2/7,1.5). In our empirical works, each εn for
different futures oil price contracts is 1.5.

12 In our empirical works, we test the statistical significance by using the
bootstrapped method 3000 times.
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5. Empirical analysis

As mentioned in the above section, we test unit roots of variables
with ADF (1979), PP (1988), and KPSS (1992) tests. Table 2 shows that
spot oil prices and futures oil prices for four contracts are integrated in
order 1 (I(1)), respectively. We next use Johansen's linear cointegra-
tion method to examine whether the cointegration exists or not. The
results of Tables 3–4 confirm the existence of cointegrating relation-
ships between contemporaneous spot and various futures oil prices
from both the eigenvalue and the trace test statistics. Table 4 displays
the estimated long-run relationships and shows that all four types of
oil futures contracts have long-run information content for the
behavior of spot oil prices. This is the same as with the findings of
Maslyuk and Smyth (2009b), in that spot and futures oil prices of the
same grade as well as spot and futures prices of different grades are
co-integrated. However, Maslyuk and Smyth (2009b) and Huang et al.
(2009) neglect the stochastic cointegrating coefficients and the test of
varying-coefficient behavior.

We further examine whether cointegrating coefficients are
constant or not with Eq. (1). Table 5 shows the statistically significant
existence of non-linear cointegrating relationships between contem-
poraneous spot and various futures oil prices.13 The finite sample
critical values are computed by means of Monte Carlo simulations
using 3000 replications. This result also at least implies a possible bias
in estimation and prediction. To sum up, the existence of time-varying
cointegrating relationships is confirmed between spot and future oil

prices, and therefore the next step is to discover such varying
cointegrating coefficients. We further examine effects of quantile
cointegrating relations. Table 6 and Fig. 1 show these cointegrating
coefficients and their corresponding tracks across various quantiles.
Table 6 presents that all estimated coefficients are statistically
significant at the 1% level. More clearly, Fig. 1 offers a significant
difference between low and high quantiles, except for the case of
futures oil prices maturing in 2 months. In particular, the path for the
case of 1-month futures contracts is different from the others.
Significantly, the length of futures contracts influences their coin-
tegrated relationships with spot prices.

In the following, we analyze cointegrating relations individually
shown in Figs. 2–5. For short 1-month contracts shown in Fig. 2,
cointegrating coefficients are increasing with quantiles. Corresponding
to the result of a conventional linear method, it implies that when spot
oil prices are at a low level (lowquantiles), the response of spot prices to
futures prices is very small. However, when spot oil prices are at a high
level (high quantiles), the responses become much bigger.

Through the explanation of the prospect theory, a high level of spot
oil prices causes a steeper reflection based on the implicative
reference point of losses versus the reference point of gains. Therefore,
states of low spot prices reduce the sensitivity to shocks of futures oil
prices, but in contrary states of high spot prices raise the sensitivity.
However, whenwe examine the cases of long futures oil contracts, the
results are different from 1-month futures oil contracts. The
cointegrating coefficients of 1-month futures contracts are in a
monotonic increasing trend, but the estimated cointegrating coeffi-
cients of long futures contracts do not vary much within quantiles 0.1
to 0.7. Except for the futures contracts in two months, they present a
downward trend within high quantiles (0.7―0.9). Roughly speaking,
the differential and smaller responses of spot oil prices to shocks of
futures oil prices only happen when spot oil prices are at a high level.
This difference should be ascribed to long contracts that providemuch
time for observation and waiting (i.e., options to wait). When spot oil
prices are at a high level, people are less sensitive to shocks in futures
oil prices of long maturities.

From the above results, we not only exhibit the effects of a
reference point (here, it means the performance of spot oil prices), but

Table 4
Normalized cointegration vectors in Johansen's cointegration test.

Model Spot price Futures price

Contract 1 of futures prices 1 −0.998
(−0.001)

Contract 2 of futures prices 1 −0.984
(−0.007)

Contract 3 of futures prices 1 −0.973
(−0.012)

Contract 4 of futures prices 1 −0.964
(−0.016)

Notes: The spot and futures prices are taken in natural logarithm. The values in
parentheses are standard errors.

13 In our test, the residuals are stationary and not auto-correlative.

Table 3
Johansen cointegration test statistics.

Maximum eigenvalue statistics Trace eigenvalue statistics

Spot price vs. Futures price of contract 1
H0: r=0 132.67** 234.96**
H0: r≤1 2.30 2.30

Spot price vs. Futures price of contract 2
H0: r=0 38.88** 40.17**
H0: r≤1 1.29 1.29

Spot price vs. Futures price of contract 3
H0: r=0 34.94** 36.86**
H0: r≤1 0.91 0.91

Spot price vs. Futures price of contract 4
H0: r=0 33.70** 34.32**
H0: r≤1 0.62 0.62

Notes: The spot and futures prices are taken in natural logarithm. The lag length is
chosen by AIC in Johansen's cointegration test. (**) denotes rejection at the 1% level or
better.

Table 2
Results of unit-root test.

ADF-test PP-test KPSS-test

Variable Level 1st diff. Level 1st diff. Level 1st diff.

Spot price −1.24 −37.46** −1.40 −77.60** 6.66** 0.08
Futures price of contract 1 −1.17 −37.15** −1.35 −77.87** 6.67** 0.09
Futures price of contract 2 −1.15 −76.50** −1.12 −76.51** 6.76** 0.10
Futures price of contract 3 −0.99 −76.46** −0.97 −76.46** 6.81** 0.11
Futures price of contract 4 −0.88 −77.66** −0.85 −77.67** 6.85** 0.12

Notes: The spot and futures prices are taken in natural logarithm. (**) denotes rejection
at the 1% level or better. The null hypotheses are variable and have unit root in the ADF
and PP tests, but the null hypothesis in the KPSS test is a variable without a unit root,
respectively.

Table 5
The test of quantile cointegration for the cointegrating relation.

Model Sup |V(τ)| CV10 CV05 CV01

Spot price vs. Futures price of contract 1 54.624** 5.409 6.871 11.083
Spot price vs. Futures price of contract 2 22.580** 5.605 7.196 11.416
Spot price vs. Futures price of contract 3 28.879** 5.472 7.205 11.464
Spot price vs. Futures price of contract 4 41.818** 5.501 7.161 11.664

Notes: The frequency of the data is daily. CV10, CV05, and CV01 are the critical values of
statistical significance at 10%, 5%, and 1%, respectively. (**) denotes rejection at the 1%
level or better.
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also verify the long-run cointegrating relationship between spot and
futures oil prices by using the quantile cointegration test. In the
following, we further examine the effects of estimated error-
correction terms (i.e., to examine the coefficient η in Eq. (2)); i.e.,
we consider the speed of adjustments to the long-run equilibrium. For
convenient observation, we exhibit them in Fig. 6. There, we observe
that in quantile cointegrating relationships between spot prices and
futures oil prices of 1-month contracts (QC-SF1), the effects of linear
error-correction term (EC) in low and high quantiles are lower than in
median.

The performances of spot market states have a significant
influence on the effect of EC. On the other hand, the results based
on the contracts of futures oil prices of 2, 3, and 4 months have a
similar trend.14 These results differ from the results of 1-month
futures contracts. The effects of EC are increasing with quantiles. In
other words, lower (higher) spot price performances imply larger
(less) effects of error-correction terms with respect to long futures
contracts. These phenomena indicate that extreme oil market states
usually distort their normal performances.

We now explore Granger-causalities between spot and various
futures oil prices. Here, we also exercise linear (VECM) and non-linear

methods (Diks and Panchenko, 2006). From Panel A in Table 7, we
clearly see that bi-directional causalities exist between spot and
various futures oil prices for linear and non-linear methods. Different
to previous studies, we examine the causality across quantiles that
include information from spot markets. In Panel B of Table 7, we see
some differentials among various contracts and quantiles. First, we
observe the examination of causalities running from futures prices to
spot prices. From these statistic values, we find that futures oil prices
significantly Granger-cause spot oil prices in the lowest quantile—0.1.
When performances of spot markets are in the worst situation, shocks
of futures prices can significantly cause an impact on spot prices,
rather than in better situations.

Under the long futures contracts maturing in 2, 3, and 4 months,
futures oil prices do not Granger-cause spot prices in high quantiles,
except for the short 1-month contracts. Therefore, we deduce that
when market participants have much time to observe (i.e., to make a
decision based on longer futures contracts), they do not expect the
effects of futures prices to work on spot prices, except when spot
markets are showing lower performances. Furthermore, 1-month
futures contracts are usually the most actively traded, which matches
the consistent expectations traded. Obviously, market participants do
not expect futures oil prices to show a precise prediction to future spot
prices. This may be due to the effect of adaptive learning, as by that,
the past several times of wrong prediction drive market participants
to not believe the predictability of futures prices. An exception is
when spot markets are in the worst situation, because they then
expect futures prices to show a sign of reversing back.

Table 6
The estimated coefficients of quantile cointegration.

Low Median High

Spot price and Futures price of contract 1
Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta 0.993** 0.993** 0.995** 0.997** 1.000** 1.002** 1.004** 1.007** 1.008**

Spot price and Futures price of contract 2
Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta 0.995** 0.994** 0.994** 0.994** 0.995** 0.995** 0.996** 0.996** 0.996**

Spot price and Futures price of contract 3
Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta 0.992** 0.990** 0.990** 0.990** 0.989** 0.990** 0.991** 0.988** 0.984**

Spot price and Futures price of contract 4
Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta 0.991** 0.987** 0.986** 0.985** 0.986** 0.988** 0.988** 0.984** 0.975**

Notes: (**) denotes rejection at the 1% level or better.

14 In Fig. 6, we denote QC-SF2, QC-SF3, and QC-SF4 as the quantile cointegrating
relationships between spot prices and futures oil prices of 2-, 3- and 4-month
contracts, respectively.
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Fig. 1. Coefficients of quantile cointegration with spot and various futures prices.
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Fig. 2. Coefficients of quantile cointegration and Johansen's cointegration between spot
prices and futures prices with 1-month maturity.
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Different to previous studies in which spot oil prices Granger-
cause futures prices conditional on every kind of futures contracts and
various quantiles, people believe the performances of spot markets
will directly influence futures markets. In particular, the statistical
evidence is significant mostly within median and high quantiles (0.4–
0.9). In other words, when spotmarkets perform better, the optimistic
sentiment will drive people to expect better performances in the
futures markets.

This paper finally tests market efficiency under two different
hypotheses – the expectations hypothesis and the no arbitrage rule –

derived by Brenner and Kroner (1995). To fit the hypotheses, we
examine them with monthly data.15 Similarly, we examine unit root
tests and Johansen's cointegration tests for the relative variables and
models. These results are shown in Tables 8–12. It is noticeable that
even after considering monthly data, non-constant cointegration
relationships between spot and futures oil prices still emerge. In the
following, we examine market efficiency under different hypotheses.

We examine the efficiency of crude oil markets with Eq. (4) for the
expectations hypothesis. First, we show the results of testing the effect of
quantile cointegration in Table 13. It should be noted that if the effect of
quantile cointegration does not exist, thenwe examinemarket efficiency
with a linear estimation. When we set critical values at the 1% level, the
effects of quantile cointegration exist between spot prices and futures oil
pricesmaturing in3and4 months, butnot in contracts of 1 and2 months.
Table 14 presents the results of testing for efficiency based on the
expectations hypothesis. Except for the 1-month futures contract,
efficiency does not exist in the linkage of the spot oil price and the
futures oil price of contractsmaturing in 2, 3, and 4 months, respectively.
Not surprisingly, futures oil prices of short maturities contain more
completely available information than the futures prices of long
maturities, but the cointegrating coefficients varying with innovations
indeed exist in the long futures contracts maturing in 3 and 4 months.
This shouldbe related to the adjustments, on the impacts of futures prices
of long maturities on spot prices, according to current performances of
spot markets.

To test market efficiency under the no arbitrage rule, we examine
first the effect of the quantile cointegration shown in Table 15, which
presents no effect of quantile cointegration at the 1% level. Thus, we
utilize the linear estimation to test the model in Eq. (5), and the
empirical results are reported in Table 16. It shows that, except for
futures contracts maturing in four months, market efficiency under

the no arbitrage rule holds under the linkage of spot oil prices and
futures oil prices for contracts maturing in 1, 2, and 3 months,
respectively.

In testing market efficiency, one may consider the influence of
exogenous shocks. For example, the findings of Switzer and El-Khoury
(2007) are consistent with the expectations hypothesis, even during
episodes of extreme conditional volatility. Here, we examine market
efficiency based on different innovations of spot markets, although
such effects merely appear in 3- and 4-month futures contracts under
the expectations hypothesis. Our empirical results are not consistent
with the expectations hypothesis, even conditional on various spot
market performances. Both the results of Switzer and El-Khoury
(2007) and ours seem to represent that exogenous shocks do not
influence the market efficiency for spot–futures oil prices under the
expectations hypothesis.

Generally speaking, if futures prices reflect all of the relative
available information, then the spot price should be consistent with
respect to prior futures prices. In the above examination, we find that
the results of testing the efficient market hypotheses are relative with
the length of the futures contracts. It should be reasonable that the
length of the futures contracts may be too long to reflect all available
information. Therefore, the efficient market hypotheses seem to
afford a shorter length of futures contracts.

From the above analysis, in addition to verifying the existence of
non-linear long-run relationships, we also explore the effects of
advantageous and disadvantageous reference points (spot oil

15 Here, the current terms – spot price and risk-free returns – are adopted on the
25th business day or prior to the 25th calendar day of the month, and the lagged-term
futures prices are adopted on the first business day after the 25th calendar day of the
month.
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markets) that cause different effects on cointegrating relationships
and causalities, respectively. Not surprisingly, this phenomenon is
found in economic and financial areas. It is worth noting that although

some theoreticmodels have described spot–futures price correlations,
there is still much deviation when comparing with real decisions,
especially for markets in extreme states. Like the appearance in this
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Fig. 6. The estimated coefficients of error-correction terms extracted from linear and quantile cointegrating models.

Table 7
The non-Granger-causality (non-GC) test (pair-wise).

Panel A.

Linear non-GC test Non-linear non-GC test

Null hypothesis VEC (Chi-sq.) Diks and Panchenko (2006) (T-statistic)

F1 →× S 199.7** 9.2**
F2 →× S 248.8** 8.7**
F3 →× S 250.2** 8.5**
F4 →× S 245.7** 8.3**
S →× F1 734.9** 13.9**
S →× F2 335.2** 14.0**
S →× F3 238.1** 13.6**
S →× F4 227.9** 13.2**

Panel B.

Quantile non-GC test (F-statistic)

Null hyp. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1 →× S 17.3** 5.1** 3.3** 2.2** 2.1** 2.4** 2.8** 4.0** 5.2**
F2 →× S 7.5** 2.7** 2.7** 2.7** 1.5 1.2 1.9 2.3* 1.6
F3 →× S 4.4** 1.7 1.7 2.0* 0.9 0.8 1.4 2.1* 1.5
F4 →× S 3.8** 1.7 1.5 1.7 0.6 0.5 1.3 1.6 1.2
S →× F1 60.7** 87.3** 288.4** 333.7** 441.3** 436.5** 139.2** 75.1** 56.0**
S →× F2 94.1** 99.7** 143.9** 179.5** 186.7** 222.0** 186.7** 203.3** 145.6**
S →× F3 95.6** 98.2** 156.6** 160.0** 171.0** 122.8** 102.7** 111.0** 166.4**
S →× F4 76.6** 97.3** 120.5** 116.6** 112.8** 173.5** 90.8** 119.2** 158.1**

Notes: Variables S, F1, F2, F3, and F4 mean the first difference of spot price, futures prices of contracts of 1-, 2-, 3-, and 4-months taken in natural logarithm, respectively. The null
hypothesis: X→× Y means that X does not cause Y. (*) and (**) denote rejection at the 5% and 1% levels or better, respectively. Here, the number of lags (according to SIC) for pairs
(S, F1), (S, F2), (S, F3), and (S, F4) in the VECM and quantile models is 21, 9, 9, and 8, respectively, but the lag length in the non-linearmethod is one for every kind of futures contracts.
In particular, the constant term we estimate in the non-linear method is within the range from 7 to 9.

932 C.-C. Lee, J.-H. Zeng / Energy Economics 33 (2011) 924–935



Author's personal copy

paper, market innovations have non-neglectable influences on long-
run relations and causalities for the linkage of spot and futures oil
prices.

6. Conclusions

This paper employs novel quantile cointegrating regressions of
Xiao (2009) to examine cointegration, causalities, and market
efficiency for the linkage of spot and futures oil markets. In contrast
to a traditional linear estimation conditional on mean distributions of
dependent variables, this method allows us to explore cointegration
relationships conditional on quantiles in the distributions of spot oil
prices. In our results, the effect of quantile cointegration indeed exists

Table 9
Johansen's cointegration test statistics under the expectations hypothesis.

Maximum eigenvalue statistics Trace eigenvalue statistics

Spot price vs. Futures price of contract 1
H0: r=0 26.61** 27.65**
H0: r≤1 1.04 1.04

Spot price vs. Futures price of contract 2
H0: r=0 28.10** 29.18**
H0: r≤1 1.07 1.07

Spot price vs. Futures price of contract 3
H0: r=0 20.37** 20.41**
H0: r≤1 0.04 0.04

Spot price vs. Futures price of contract 4
H0: r=0 36.17** 37.43**
H0: r≤1 1.25 1.25

Notes: The spot and futures prices are taken in natural logarithm. The lag length is
chosen by AIC in Johansen's cointegration test. (**) denotes rejection at the 1% level or
better.

Table 8
Results of unit-root test: monthly data.

ADF-test PP-test KPSS-test

Variable Level 1st diff. Level 1st diff. Level 1st diff.

Spot price −1.46 −17.19** −1.24 −17.46** 1.40** 0.05
Futures price of contract 1 −1.26 −16.04** −1.16 −16.34** 1.39** 0.08
Futures price of contract 2 −1.11 −15.75** −1.05 −15.90** 1.40** 0.09
Futures price of contract 3 −0.99 −15.67** −0.98 −15.76** 1.40** 0.10
Futures price of contract 4 −0.88 −15.56** −0.94 −15.60** 1.40** 0.10
Risk-free rate −1.33 −6.62** −1.48 −16.36** 1.03** 0.05

Notes: The spot and futures prices are taken in natural logarithm. (**) denotes rejection
at the 1% level or better. The null hypotheses of variables are with unit roots in the ADF
and PP tests, but the null hypothesis of variables is stationary in the KPSS test,
respectively.

Table 10
Normalized cointegration vectors in Johansen's cointegration test under the expecta-
tions hypothesis.

Model Spot price Futures price

Contract 1 of futures prices 1 −0.996
(−0.005)

Contract 2 of futures prices 1 −0.983
(−0.009)

Contract 3 of futures prices 1 −0.970
(−0.013)

Contract 4 of futures prices 1 −0.968
(−0.015)

Notes: The spot and futures prices are taken in natural logarithm. The values in
parentheses are standard errors.

Table 11
Johansen's cointegration test statistics under the no arbitrage rule.

Maximum eigenvalue statistics Trace eigenvalue statistics

Spot price vs. Futures price of contract 1
H0: r=0 25.82** 36.93**
H0: r≤1 10.80 11.11
H0: r≤2 0.30 0.31

Spot price vs. Futures price of contract 2
H0: r=0 27.95** 37.79**
H0: r≤1 9.56 9.85
H0: r≤2 0.29 0.29

Spot price vs. Futures price of contract 3
H0: r=0 28.06** 38.24**
H0: r≤1 9.96 10.18
H0: r≤2 0.22 0.22

Spot price vs. Futures price of contract 4
H0: r=0 25.27** 34.99**
H0: r≤1 8.59 9.71
H0: r≤2 1.12 1.12

Notes: The spot and futures prices are taken in natural logarithm. The lag length is
chosen by AIC in Johansen's cointegration test. (**) denotes rejection at the 1% level or
better.

Table 12
Normalized cointegration vectors in Johansen's cointegration test under the no
arbitrage rule.

Model Spot price Futures price Risk-free rate

Contract 1 of futures prices 1 −0.997 −0.124
(−0.006) (−1.910)

Contract 2 of futures prices 1 −0.978 0.847
(−0.010) (−1.722)

Contract 3 of futures prices 1 −0.961 0.905
(−0.015) (−1.639)

Contract 4 of futures prices 1 −0.927 3.0424
(−0.019) (−1.513)

Notes: The spot and futures prices are taken in natural logarithm. The values in
parentheses are standard errors.

Table 13
The test of quantile cointegration. Description: The test is for the market efficiency under

expectations hypothesis with the model: LnSt = α + βLnFt−M + ∑
K

i=−K
ωiΔLnFt−i +

εt ;M = 1;2;3;4.

Model Sup |V(τ)| CV10 CV05 CV01

Spot price vs. Futures price of contract 1 5.03 5.11 6.08 8.08
Spot price vs. Futures price of contract 2 8.52* 5.49 6.49 8.86
Spot price vs. Futures price of contract 3 10.89** 5.43 6.56 10.45
Spot price vs. Futures price of contract 4 17.95** 5.45 6.74 10.67

Notes: The frequency of the data is monthly. CV10, CV05, and CV01 are the critical
values of statistical significance at 10%, 5%, and 1%, respectively. (*) and (**) denote
rejection at the 5% and 1% levels or better, respectively.

Table 14
The test of market efficiency under the expectations hypothesis.

Model Method Result

Spot price vs. Futures
price of contract 1

Linear
cointegration

The market is efficient
(p-value is 0.82)

Spot price vs. Futures
price of contract 2

Linear
cointegration

The market is not efficient
(p-value is 0.02)

Spot price vs. Futures
price of contract 3

Quantile
cointegration

The market is not efficient for each
quantile (p-value is approximate to 0
for each quantile)

Spot price vs. Futures
price of contract 4

Quantile
cointegration

The market is not efficient for each
quantile (p-value is approximate to 0
for each quantile)

Note: The null hypothesis is that (α=0,β=1) with the Wald test.
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in the linkage between spot and futures oil prices. This condition
could drive a linear estimation for cointegration to produce an
imprecise prediction. We find that the length of futures contracts, not
surprisingly, has an influence on cointegrating relationships between
spot and futures oil prices. These results inevitably relate to long
futures contracts that provide much time to wait and observe, rather
than for an immediate decision so as on short-term futures contracts.

In testing Granger-causalities, we also show that spot and futures
oil prices are influenced by quantiles and futures contracts. Our
findings differ from linear (VECM) and non-linear methods, which
present bi-directional causalities. In our results, spot oil prices indeed
cause futures oil prices. However, except for 1-month futures
contracts, the causality running from futures oil prices to spot prices
merely exists only in lower quantiles. Market participants pay
significantly more attention to spot oil markets rather than futures
oil markets. Hence, in most of our results, spot oil prices Granger-
cause futures oil prices. In testing market efficiency, we find that short
futures contracts seem to be consistent with efficient market
hypotheses, although the effect of quantile cointegration does not
work out in some cases. The no arbitrage rule is also more practical
than the expectations hypothesis in hedging risk.

Comparing with recent findings of asymmetric performances
among different market states (booming and depressing markets)
and in addition to asymmetric effects of oil prices shocks, such
asymmetric effects are less considered in energy markets, especially
for the confirmed cointegrating relationship between spot and futures
oil prices. Thus, we hope our empirical results are able to offer wide
and different aspects to investors and firms for investing and hedging,
respectively. We provide a more accurate model to understand the
non-linear relationship, thus enabling a better forecast of the future
dynamics of the oil or financial market. Policy-makers should take the
non-linear behavior of the spot–future oil prices nexus into account
when building the estimation and prediction modes for energy or
financial markets. Finally, if the firms want to hedge risk by futures
contracts, then they should choose the length of futures contracts
appropriately to avoid an imprecise prediction.
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